

NASA SLI-Technology Studies

Jeff Masek, NASA GSFC July 26, 2016

Background

- 2014: NASA/USGS Architecture Study Team (AST) examined options for long-term mission architectures
 - Based on LST feedback, emphasized opportunities for smaller observatories
 - Smaller platform => lower cost => higher launch cadence & constellation formation => more frequent imaging
 - Enables SLI launch as secondary payload (cost reduction)
 - Other options included
 - Migration of SLI to hyperspectral capability
 - Reliance on international systems (e.g. Sentinel-2) for reflective multispectral continuity
- 2014-15: Reduced Instrument Envelope Size (RIES) Studies
 - Funded six companies to pursue small instrument concepts that could meet Landsat-8 requirements (+ 60m TIR)
- 2016: NASA Earth Science Technology Office (ESTO) ROSES Solicitation

SLI Reduced Envelope Study

- SLI funded six contracts to study options for reducing VSWIR/TIR instrument size
 - Goal of 50x50x50cm volume, 50W, 50kg, with L8 specs (and 60m TIR)
 - Contractors asked to explore design concepts, identify driving requirements,
 consider technologies that are likely to be available in the *Landsat 10* era
 - Disaggregation of TIR and VSWIR could be considered
- Awards made to:
 - Ball Aerospace & Technologies Corporation of Boulder, CO
 - Exelis Inc., Geospatial Systems of Fort Wayne, IN
 - Lockheed Martin Space Systems Company of Greenbelt, MD
 - Northrop Grumman Systems Corporation, Aerospace Systems of Redondo Beach, CA
 - Raytheon Company of El Segundo, CA
 - Surrey Satellite Technology US LLC of Englewood, CO
- 6-month studies complete March 2015 (with subsequent follow-on studies)

General REIS Findings

- The 50/50/50 target was not realistic, but many designs approached the volumetric goal (<1m³ designs are feasible).
 - Both single- and multiple-instrument approaches
 - Small, fast optics
 - Smaller pitch detectors
 - Variety of scanning modes possible (pushbroom, push-whisk, step-stare...)
 - 15° Field of view requirement limits telescope choices for a pushbroom; Whiskbroom scanners could use smaller FOV telescope designs
 - Compact fast telescope designs may be susceptible to stray light, and increased AOI variation on focal plane
- Edge Slope Response (~Point Spread Function) at longest wavelength (2.2 or 12 μm) drives aperture requirements and overall instrument size
 - Techniques exist to reduce the diffraction dictated apertures at the expense of data rate, SNR, and edge response ring.
 - FPA Oversampling
 - Detector geometries
 - MTF compensation in re-sampling algorithms (aka sharpening filters)
- Onboard calibration does not generally drive instrument size

ESTO ROSES 2015 Solicitation

- Proposals to advance SLI goals through technology development
- Two types of proposals solicited
 - Advanced Technology Demonstrations
 - Instrument prototypes and demonstrations
 - 3-4 awards with up to \$4.8M program budget (year 1)
 - 1-5 year awards
 - Technology Investments
 - Component or breadboard demonstrations of new technologies that could be infused in future land imaging instruments
 - 3-4 awards with up to \$1.2M program budget (year 1)
- Reference Mission Architecture (based on Landsat-8) provided in solicitation
- Selections pending (likely August 2016)

General Technology Concepts

- Compact multispectral instruments
 - Pushbroom, Push-whisk, Step-stare
 - Wide FOV for better than 16-day coverage (e.g. ACMS)
- Hyperspectral systems
 - Grating (Ofner, Dyson)
 - Prism
- Near-term Components
 - Tactical cryocoolers
 - New detectors & arrays
 - Alternative calibration sources
- Advanced imaging technology
 - Optical interferometry
 - Waveguide optical systems

SLI-T Strategy FY16/17/21

Architecture Considerations

- Curtis: Have the technology studies to date eliminated any potential architecture or measurement concept for L10?
 - Not really. Very small cubesats (<=6U) probably not feasible, but other smallsat concepts are possible
 - Compact VSWIR and TIR imagers can be built that satisfy L8/L9 requirements
 - Compact hyperspectral imagers appear feasible with a few caveats
 - Stray light from grating systems difficult to predict
 - 10nm wavelengths may not "phase" with L8 30nm bandpasses
 - Required hyperspectral SNR may require aggregation to ~60m for compact system
- Key issues for future SLI mission architecture
 - What VSWIR enhancements are desired or required? What are their benefits relative to the existing capability? Can these be prioritized so that trades can be performed?
 - What is the appropriate role for Sentinel-2 in improving temporal frequency?
 - What frequency and resolution is required/desired for TIR observations?
 - Is there a community need/desire for hyperspectral data?